Conformal Mapping in Linear Time

نویسنده

  • Christopher J. Bishop
چکیده

Given any ǫ > 0 and any planar region Ω bounded by a simple n-gon P we construct a (1 + ǫ)-quasiconformal map between Ω and the unit disk in time C(ǫ)n. One can take C(ǫ) = C + C log 1 ǫ log log 1 ǫ . Date: August 13, 2009. 1991 Mathematics Subject Classification. Primary: 30C35, Secondary: 30C85, 30C62 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Optimization of Conformal Mapping Functions used in Developing Closed-Form Solutions for Underground Structures with Conventional cross Sections

Elastic solutions applicable to single underground openings usually suffer from geometry related simplification. Most tunnel shapes possess two axes of symmetry while a wide range of geometries used in tunneling practice involve only one symmetry axis. D-shape or horse-shoe shape tunnels and others with arched roof and floor are examples of the later category (one symmetry axis). In the present...

متن کامل

Conical Conformal Antenna Design using the CPM Method for MIMO Systems

Abstract- In this article, the design of conformal antennas has been discussed using the characteristic modes (CM) method. For this purpose, the vector wave function(VWF) has been utilized to achieve a two-dimensional mapping of the conformal antenna. In designing and analyzing of cone-shaped antennas applicable for multi-input multi-output (MIMO) systems, the most important goal is to achieve ...

متن کامل

Simulation of Ideal External and Internal Flows with Arbitrary Boundaries Using Schwarz Christoffel Transformation

The flow field, velocity and pressure coefficient distribution of some 2-D ideal flows are presented. Conformal mapping is used to simulate two-dimensional ideal flow for a variety of complex internal and external configurations, based on the numerical integration of Schwarz-Christoffel transformation. The advantages of this method are simplicity and high accuracy. The method presented in this ...

متن کامل

A Linear Variational Principle for Riemann Mapping and Discrete Conformality

We consider Riemann mappings from bounded Lipschitz domains in the plane to a triangle. We show that in this case the Riemann mapping has a linear variational principle: it is the minimizer of the Dirichlet energy over an appropriate affine space. By discretizing the variational principle in a natural way we obtain discrete conformal maps which can be computed by solving a sparse linear system....

متن کامل

Numerical Conformal Mapping of Doubly Connected Regions via the Kerzman-stein Kernel

Abstract: An integral equation method based on the Kerzman-Stein kernel for conformal mapping of smooth doubly connected regions onto an annulus A = {w : μ < |w| < 1} is presented. The theoretical development is based on the boundary integral equation for conformal mapping of doubly connected regions with Kerzman-Stein kernel derived by Razali and one of the authors [8]. However, the integral e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2010